The Impact of Hepatitis A and B Vaccination in Alaska

Brian J McMahon, MD, MACP
Program Director: Liver Disease and Hepatitis Program, Alaska Native Medical Center
Guest Researcher, Arctic Investigations Program/CDC
Historical Background

• Alaska Natives (AN) had the highest prevalence and incidence rate of hepatitis B virus (HBV) of any non immigrant group in US
 – Incidence of HCC highest in AN in US

• The highest rates of acute hepatitis A virus in US in most years up to 1995 was found in Alaska
Geographic Distribution of HBV Genotypes in Alaska Natives
Hepatitis B in Alaska Natives

- 1972-73: High incidence acute hepatitis B
- 1973-1974: Serosurvey found prevalence of HBsAg in 12 villages in Southwest AK 6.4% (0-20.1%)1
- 1974-1978: Incidence study 1280 seronegative persons: 14.8% HBV2
 - 29% infected < 5 years became chronic carriers
 - Transmission mainly horizontal from child to child probably through open cuts and scratches
 - HBsAg was found all over environmental surfaces (school lunchroom table tops, homes of carriers)

1Schreeder Am J Epidemiol 1983; 118:543-9
2McMahon JID 1985; 151:599-603
Intervention to Control HBV in Alaska: Questions in 1980

• Can we halt the spread of HBV with the new HBV vaccine?
• If so, how long will protection last?
• What about those chronically infected who would not benefit by vaccination?
 – Can we detect hepatocellular carcinoma early enough to resect
 – Will we eventually be able to treat chronic HBV with antiviral therapy
Hepatitis B Vaccination in Alaska

- AN Hepatitis B Control Program: A collaboration between IHS, CDC, AN Health Corporations and State of Alaska with Congressional Funding
- 1983-87: 53,000 Alaska Natives screened and 40,000 susceptible were vaccinated
- 1984: Hepatitis B vaccination of all infants

 Lancet, 1987; 330:1134-1136
Incidence Symptomatic Hepatitis B in AK Natives 1981-2003

- CDC/HIS Vaccine Demonstration Program begins in 16 villages of Yukon Kuskokwim Delta
- Statewide Program begins-all susceptibles immunized
 - pregnant women screened/infants HBvax + HBIG
 - begin universal newborns immunization
Age-specific Prevalence of HBV Infection
Bristol Bay Eskimos, 1994

J Infect Dis 2000;181:413-418
How Long Does Protection after Hepatitis B Vaccine Last?

- How fast does anti-HBs decay?
- Do breakthrough HBV infections occur?
- What are the implications of breakthrough infections?
- In persons who lose anti-HBs, can humeral immunity be demonstrated—Anamnestic response to booster dose?
- Does cellular immunity last longest?
Long-Term Immunogenicity & Efficacy: Children & Adults

• Alaska HBV Vaccine Demonstration Project: 1530 children and adults immunized in 1981
 – Followed yearly for 11 years and at year 15
 – No booster given at 1-11 and 15 years
 – % with anti-HBs levels > 10 mIU/ml
 • 5 years: 81% (JAMA 1989;261:2362-6)
 • 7 years: 74% (Arch Int Med 1991;151:1634-6)
 • 15 years, 66% (Ann Int Med;2005;142:333-41)

• Test all participants for anti-HBs, HBsAg, anti-HBc
 – Sequence HBV DNA if HBsAg or anti-HBc+
Long-Term Immunogenicity & Efficacy: Alaska Study at 15 years

- No chronic carriers or acute symptomatic HBV cases were identified
- Anti-HBs GMC decreased from mean concentration of 822 mIU/ml to 27 mIU/ml
- 23 HBV breakthrough infections defined by appearance of anti-HBc
- Significantly more breakthrough infections in non responders compared to responders
- 6 were transiently HBV DNA positive, 4 of whom had HBV surface mutants and one transiently had 145R escape mutant

Alaska HBV Vaccine Demonstration Project: 22 Year Follow-Up

- Residents of 7 villages, 9 villages not studied
- % with anti-HBs levels > 10 mIU/ml
 - 5 years: 81%
 - 7 years: 74%
 - 15 years: 66%
 - 22 years: 59%

- Booster dose Recombivax® 5 mcg given to those who with anti-HBs <10 mIU/mL:
Vax Demo 22: Study Design

• Blood Draw/Boost schedule
 – Day 0: Pre booster draw/booster dose
 – Day 10-14: Post booster blood draw
 – Day 30-60 Post booster blood draw

• Booster (anamnestic) response at 2 weeks:
 – 4-fold anti-HBs increase, or
 – Increase to > 10mIU/mL
Vax Demo 22: Preliminary Results in Persons Who Responded to Initial Series

- 5 persons anti-HBc positive (all previously identified, all HBV DNA negative)
- 184 (41%) with anti-HBs <10 mIU/mL
 - 155 received booster and follow up
 - 113/147 (77%) with boost at 10-14 days
 - 125/155 (81%) with boost at 30-60 days
- Overall, 94% (95% CI: 91.0% – 95.6%) had evidence of immunity: either boosted at 10-14 days or had anti-HBs >10 mIU/mL at 22 years
How Long Will Protection from HBV Vaccine Last when Given at Birth?

- Few studies beyond 10 years
- Infants of HBsAg+ moms and/or those living in an endemic environment have longer persistence of anti-HBs
- Demonstration of long-term immunity
 - Persistence of anti-HBs
 - Response to booster dose
Long-term Efficacy of HBV Vaccine Administered in Infancy: Alaska Study

- 334 children immunized starting at birth with documented anti-HBs response ≥10 mIU/ml followed for up to 15 years (median 10 years)
- At 5 years 49% who received plasma and only 6% who received recombinant vaccine had anti-HBs levels ≥ 10 mIU/ml
- At 10 years 21% who received plasma and 3% recombinant vaccine had anti-HBs ≥ 10 mIU/ml

Ped Infect Dis J 2005;24:786-92
Long Term Persistence of Anti-HBs In Alaska Native Children Immunized At Birth

Anti-HBs Persistence by Vaccine Type and Maternal Status

- Plasma vaccine, mothers HBsAg-negative
- Plasma vaccine, mothers HBsAg-positive
- Recombinant vaccine, mothers HBsAg-negative
- Recombinant vaccine, mothers HBsAg-positive
Long-term Efficacy of HBV Vaccine Administered in Infancy: Alaska Study

- 6 children had an HBV breakthrough infection
- None of these children were symptomatic or became HBsAg positive
- 2 of these had HBV DNA transiently
Alaska Booster Dose Studies in Children Given Recombinant Hepatitis B Vaccine Starting at Birth

<table>
<thead>
<tr>
<th>Age at Boost</th>
<th>% anti-HBs >10</th>
<th>No. Boosted</th>
<th>No. (%) response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moms HBV neg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 years*</td>
<td>12.5%</td>
<td>134</td>
<td>90%</td>
</tr>
<tr>
<td>5-7 years**</td>
<td>29%</td>
<td>158</td>
<td>99%</td>
</tr>
<tr>
<td>7.5 years*</td>
<td>0%</td>
<td>35</td>
<td>91%</td>
</tr>
<tr>
<td>10-15 years**</td>
<td>5%</td>
<td>138</td>
<td>88%</td>
</tr>
<tr>
<td>15 years^</td>
<td>0%</td>
<td>35</td>
<td>51%</td>
</tr>
</tbody>
</table>

*Peds Infect Dis 2004;23:650-5, **Pediatrics 2007;120:373-381
^Vaccine 2007;25:6958-64
<table>
<thead>
<tr>
<th>Age at Boost</th>
<th>% anti-HBs</th>
<th>No. Boosted</th>
<th>No. (%) response</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 years</td>
<td>41%</td>
<td>54</td>
<td>33 (67%)</td>
</tr>
<tr>
<td>Mom HBV-neg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 years</td>
<td>31%</td>
<td>10</td>
<td>9 (90%)</td>
</tr>
<tr>
<td>Mom HBV+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 years</td>
<td>24%</td>
<td>12</td>
<td>8 (67%)</td>
</tr>
<tr>
<td>Mom HBV-neg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-15 years</td>
<td>21%</td>
<td>74</td>
<td>71%</td>
</tr>
<tr>
<td>Mom HBV-neg</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anti-HBs levels following a booster dose of hepatitis B vaccine in HCW 3 to 13 Years after Initial Vaccination

Williams Vaccine 2001;19:4081-85
Long-Term Protection with Hepatitis B Vaccine: Conclusions

• Hepatitis B Vaccine provides long-term protection
• Immunity persists after loss of anti-HBs
• Documented protection:
 – Lasts 15-18 years in infants
 – Up to 13 years in Health Care Workers
 – 22 years in children and adults
• Lifelong protection is possible
• No evidence “vaccine escape mutants” are a threat
• Continued follow-up needed to determine duration of protection
• Booster doses NOT currently recommended
Future Studies on Long-Term Efficacy of Hepatitis B Vaccine In Alaska

- F/u up of all remaining participants in 1981 immunogenicity study 30 years after vaccination: Estimated number is ~900
- F/u up of children who received a booster dose of hepatitis B vaccine at school entry or adolescence to determine anti-HBs persistence after booster dose
Importance of Alaska Long-term Hepatitis B Vaccine Studies

- 1981 immunogenicity study is by far the largest and longest f/u study of HBV vaccine in the world
- This study is crucial to ACIP and other national/international organizations future recommendations for booster dosing in children, adults and health care workers and thus far has shown that no boosters are needed in those immunized as children over 1 year of age or adults 22 years later
Hepatitis A Story in Alaska

- 1984-1987: Study showed high rates of past hepatitis A infection*
- 1987: Large epidemic begins
- 1989: Hepatitis A vaccine trial in Alaska Native and non-Native adults and children
 - McMahon J Infect Dis 1995;171:676-9
- 1991: Hepatitis A vaccine licensed Europe
- 1993: Hepatitis A outbreak stopped by giving one dose of vaccine to 5000 people

*J Infect Dis 1993;168:1017-20
*Peach, J Infect Dis 2002;186:1081-5
Geographic Distribution of HAV Infection 1985

Anti-HAV Prevalence
- High
- Intermediate
- Low
- Very Low
Figure 1: Reported Cases of Hepatitis A in the State of Alaska, 1957-2000
Hepatitis A Outbreak
Northwest Alaska

Arch Pediatr Adolesc Med 1996;150:773-9
Alaska: The First State to Offer Universal Hepatitis A Vaccine

- Beginning in 1996, Hepatitis A vaccine offered to all Native and non-Native children ages 2-18 in Alaska: 1st State in US

- Immunization results to date:
 - > 90% of all Alaskan children have been vaccinated by school entry
 - Acute hepatitis A rate falls to lowest in Nation in 2004 (< 1 case per 100,000 persons)
Hepatitis A: Current Projects

• Long-term Immunogenicity and efficacy studies of Hepatitis A vaccine in adults, infants and children
 – 60 adults followed 10 years completed
 – 70 children, ages 3-6 f/u for 15 years
 • 100% still have anti-HAV at 10 years of age
 • Projected anti-HAV levels by modeling expected to last at least 20-30 years
 – 206 infants f/u to 10 years
Anti-HAV Declination Curve following Primary Hepatitis A Vaccination, according to Vaccination Schedule, Alaska
Alaska Hepatitis A Infant Study

- Sites: ANMC & Anchorage Neighborhood Health Center
- Randomized trial: 2 dose hepatitis A vaccine: infants stratified by Mothers anti-HAV status
 - Group 1: Vaccine 6 and 12 months of age
 - Group 2: Vaccine 12 and 18 months of age
 - Group 3: Vaccine 18 and 24 months of age
- Response other childhood vaccines to detect measured to detect any interference from Hep A

Peds Infect Dis J 2007;26:116-22
Anti-HAV Concentrations at 7 and 12 Months After First Hepatitis A Vaccine Dose, by Group, HAVIIS

<table>
<thead>
<tr>
<th>Group</th>
<th>7 Months after Vaccine</th>
<th>12 Months after Vaccine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>% Positive 1</td>
</tr>
<tr>
<td>1N</td>
<td>43</td>
<td>100</td>
</tr>
<tr>
<td>1P</td>
<td>35</td>
<td>94</td>
</tr>
<tr>
<td>1X</td>
<td>18</td>
<td>100</td>
</tr>
<tr>
<td>2N</td>
<td>38</td>
<td>100</td>
</tr>
<tr>
<td>2P</td>
<td>33</td>
<td>100</td>
</tr>
<tr>
<td>3N</td>
<td>43</td>
<td>100</td>
</tr>
<tr>
<td>3P</td>
<td>32</td>
<td>100</td>
</tr>
</tbody>
</table>

1. Seropositivity based on anti-HAV concentration of ≥33 mIU/mL
2. Geometric Mean Concentration (mIU/mL). If anti-HAV<33 mIU/mL then assigned value of 15 mIU/mL for GMC calculation.
3. 95% Confidence Interval
Long-Term Hepatitis A Vaccine in Infants

- 206 infants f/u to 10 years
- Plan to test sample of 7-year f/u bloods.
- If anti-HAV is still present in > 90%, will wait until 10-year sample complete (2008) before testing entire cohort.
- If 10-year results show good immunogenicity, will continue study to 15 years and then test all participants samples again to decide on further f/u beyond 15 years
Importance on Alaska Hepatitis A Studies

• Largest cohort of participants immunized as children with longest f/u period in world
• Largest cohort of participants immunized as infants with longest f/u period in world
• Studies are crucial to evaluate long-term effectiveness of US strategy to immunize all children between 1 and 18 years
Conclusions

• Alaska has gone from the highest rates of acute hepatitis A statewide and B in Alaska Natives in the US to the lowest rate of acute hepatitis A and B in the World (<1/100,000)
• Long-term protection from these vaccines lasts for at least 15-22 years for hepatitis B and are projected to last for at least 20-30 years for hepatitis A